欢迎来到范德生物BIOFOUNT
范德生物中国
范德生物产品购买购物车
0
搜索
1445379-92-9
  • names:

    ALS-8112

  • CAS号:

    1445379-92-9

    MDL Number: No data available
  • MF(分子式): C10H13ClFN3O4 MW(分子量): 293.68
  • EINECS:No data available Reaxys Number:No data available
  • Pubchem ID:71621663 Brand:BIOFOUNT
ALS-8112
ALS-8112(1445379-92-9)是高效,选择性的呼吸道合胞病毒(RSV)聚合酶抑制剂。ALS-8112的5'-三磷酸形式抑制RSV聚合酶,IC50值为0.02 μM。
货品编码 规格 纯度 价格 (¥) 现价(¥) 特价(¥) 库存描述 数量 总计 (¥)
YZM000865-5mg 5mg 99.9% ¥ 3540.00 ¥ 3540.00 2-3天
- +
¥ 0.00
YZM000865-1mg 1mg 99.9% ¥ 1462.00 ¥ 1462.00 2-3天
- +
¥ 0.00
快速询价
收起
你想询价的产品
请准确填写您的联系方式,以便为您提供最好的服务。
中文别名 ALS-8112(1445379-92-9);ALS8112;ALS 8112
英文别名 ALS-8112,1445379-92-9
CAS号 1445379-92-9
SMILES OC[C@]1(CCl)[C@@H](O)[C@@H](F)[C@H](N2C(N=C(N)C=C2)=O)O1
Inchi InChI=1S/C10H13ClFN3O4/c11-3-10(4-16)7(17)6(12)8(19-10)15-2-1-5(13)14-9(15)18/h1-2,6-8,16-17H,3-4H2,(H2,13,14,18)/t6-,7+,8-,10-/m1/s1
InchiKey AWSRKKBIPSQHOJ-IBCQBUCCSA-N
分子式 Formula C10H13ClFN3O4
分子量 Molecular Weight 293.68
闪点 FP 276.0±32.9 °C
熔点 Melting point No data available
沸点 Boiling point 532.8±60.0 °C at 760 mmHg
Polarizability极化度 24.3±0.5 10-24cm3
密度 Density 1.8±0.1 g/cm3
蒸汽压 Vapor Pressure 0.0±3.2 mmHg at 25°C
溶解度Solubility 生物体外In Vitro:DMSO溶解度≥ 47 mg/mL(160.04 mM)*"≥" means soluble可溶, but saturation unknown溶解度未知.
性状 白色至灰白色固体粉末
储藏条件 Storage conditions -20°C 3 years年 4°C 2 years年 / 溶液中:-80°C 6 months月 -20°C 1 month月

ALS-8112(1445379-92-9)实验注意事项:
1.实验前需戴好防护眼镜,穿戴防护服和口罩,佩戴手套,避免与皮肤接触。
2.实验过程中如遇到有毒或者刺激性物质及有害物质产生,必要时实验操作需要手套箱内完成以免对实验人员造成伤害
3.实验后产生的废弃物需分类存储,并交于专业生物废气物处理公司处理,以免造成环境污染

ALS-8112(1445379-92-9) Experimental considerations:
1. Wear protective glasses, protective clothing and masks, gloves, and avoid contact with the skin during the experiment.
2. The waste generated after the experiment needs to be stored separately, and handed over to a professional biological waste gas treatment company to avoid environmental pollution.

Tag:ALS-8112(1445379-92-9),ALS-8112试剂,ALS-8112的纯度,ALS-8112抑制剂,ALS-8112的含量,ALS-8112的作用,ALS-8112的合成,ALS-8112的使用,ALS-8112的外观,ALS-8112的性质,ALS-8112的生产,ALS-8112的MSDS,ALS-8112的厂家
产品说明 ALS-8112(1445379-92-9)是高效,选择性的呼吸道合胞病毒(RSV)聚合酶的抑制剂
IntroductionALS-8112(1445379-92-9) is a potent and selective respiratory syncytial virus (RSV) polymerase inhibitor. The 5'riphosphate form of ALS112 inhibits RSV polymerase with anIC50of 0.02 μM.
Application1
Application2
Application3
Wang G, et al. Discovery of 4'-chloromethyl-2'-deoxy-3',5'-di-O-isobutyryl-2'-fluorocytidine (ALS-8176), a first-in-class RSV polymerase inhibitor for treatment of human respiratory syncytial virus in
Jordan PC, et al. Activation Pathway of a Nucleoside Analog Inhibiting Respiratory Syncytial Virus Polymerase. ACS Chem Biol. 2017 Jan 20;12(1):83-91.
DeVincenzo JP, et al. Activity of Oral ALS-008176 in a Respiratory Syncytial Virus Challenge Study. N Engl J Med. 2015 Nov 19;373(21):2048-58.
Deval J, et al. Molecular Basis for the Selective Inhibition of Respiratory Syncytial Virus RNA Polymerase by 2'-Fluoro-4'-Chloromethyl-Cytidine Triphosphate. PLoS Pathog. 2015 Jun 22;11(6):e1004995.

Discovery of 4'-chloromethyl-2'-deoxy-3',5'-di-O-isobutyryl-2'-fluorocytidine (ALS-8176), a first-in-class RSV polymerase inhibitor for treatment of human respiratory syncytial virus infection
Abstract:
Respiratory syncytial virus (RSV) is a leading pathogen of childhood and is associated with significant morbidity and mortality. To date, ribavirin is the only approved small molecule drug, which has limited use. The only other RSV drug is palivizumab, a monoclonal antibody, which is used for RSV prophylaxis. Clearly, there is an urgent need for small molecule RSV drugs. This article reports the design, synthesis, anti-RSV activity, metabolism, and pharmacokinetics of a series of 4'-substituted cytidine nucleosides. Among tested compounds 4'-chloromethyl-2'-deoxy-2'-fluorocytidine (2c) exhibited the most promising activity in the RSV replicon assay with an EC50 of 0.15 μM. The 5'-triphosphate of 2c (2c-TP) inhibited RSV polymerase with an IC50 of 0.02 μM without appreciable inhibition of human DNA and RNA polymerases at 100 μM. ALS-8176 (71), the 3',5'-di-O-isobutyryl prodrug of 2c, demonstrated good oral bioavailability and a high level of 2c-TP in vivo. Compound 71 is a first-in-class nucleoside RSV polymerase inhibitor that demonstrated excellent anti-RSV efficacy and safety in a phase 2 clinical RSV challenge study.

Activation Pathway of a Nucleoside Analog Inhibiting Respiratory Syncytial Virus Polymerase
Abstract:
Human respiratory syncytial virus (RSV) is a negative-sense RNA virus and a significant cause of respiratory infection in infants and the elderly. No effective vaccines or antiviral therapies are available for the treatment of RSV. ALS-8176 is a first-in-class nucleoside prodrug inhibitor of RSV replication currently under clinical evaluation. ALS-8112, the parent molecule of ALS-8176, undergoes intracellular phosphorylation, yielding the active 5'-triphosphate metabolite. The host kinases responsible for this conversion are not known. Therefore, elucidation of the ALS-8112 activation pathway is key to further understanding its conversion mechanism, particularly given its potent antiviral effects. Here, we have identified the activation pathway of ALS-8112 and show it is unlike other antiviral cytidine analogs. The first step, driven by deoxycytidine kinase (dCK), is highly efficient, while the second step limits the formation of the active 5'-triphosphate species. ALS-8112 is a 2'- and 4'-modified nucleoside analog, prompting us to investigate dCK recognition of other 2'- and 4'-modified nucleosides. Our biochemical approach along with computational modeling contributes to an enhanced structure-activity profile for dCK. These results highlight an exciting potential to optimize nucleoside analogs based on the second activation step and increased attention toward nucleoside diphosphate and triphosphate prodrugs in drug discovery.

Activity of Oral ALS-008176 in a Respiratory Syncytial Virus Challenge Study
Abstract:
BACKGROUND Respiratory syncytial virus (RSV) infection is a cause of substantial morbidity and mortality. There is no known effective therapy. METHODS We conducted a randomized, double-blind, clinical trial in healthy adults inoculated with RSV. Participants received the oral nucleoside analogue ALS-008176 or placebo 12 hours after confirmation of RSV infection or 6 days after inoculation. Treatment was administered every 12 hours for 5 days. Viral load, disease severity, resistance, and safety were measured throughout the 28-day study period, with measurement beginning before inoculation. The primary end point was the area under the curve (AUC) for viral load, which was assessed immediately before administration of the first dose through the 12th day after inoculation in participants infected with RSV. RESULTS A total of 62 participants received placebo or one of three ALS-008176 dosing regimens: 1 loading dose of 750 mg followed by 9 maintenance doses of 500 mg (group 1), 1 loading dose of 750 mg followed by 9 maintenance doses of 150 mg (group 2), or 10 doses of 375 mg (group 3). In the 35 infected participants (23 of whom were treated with ALS-008176), the AUCs for viral load for groups 1, 2, and 3 and the placebo group were 59.9, 73.7, 133.4, and 500.9 log10 plaque-forming-unit equivalents × hours per milliliter, respectively (P≤0.001). The time to nondetectability on polymerase-chain-reaction assay (P<0.001), the peak viral load (P≤0.001), the AUC for symptom score (P<0.05), and the AUC for mucus weight were lower in all groups receiving ALS-008176 than in the placebo group. Antiviral activity was greatest in the two groups that received a loading dose--viral clearance was accelerated (P≤0.05), and the AUC for viral load decreased by 85 to 88% as compared with the placebo group. Within this small trial, no viral rebound or resistance was identified. There were no serious adverse events, and there was no need for premature discontinuation of the study drug. CONCLUSIONS In this RSV challenge study, more rapid RSV clearance and a greater reduction of viral load, with accompanying improvements in the severity of clinical disease, were observed in the groups treated with ALS-008176 than in the placebo group. (Funded by Alios BioPharma; ClinicalTrials.gov number, NCT02094365.).

    对不起,暂无产品评价!
MSDS
SDS 1.0 中文
展开
SDS 1.0 英文
展开
        新闻

        怎么做细胞爬片免疫组化染色实验

        细胞爬片免疫组化染色,是通过细胞爬片是让玻片浸在细胞培养基内,细胞在玻片上生长,主要用于组织学,免疫组织化学...

        2020/7/20 22:04:33

        提取病毒RNA的实验方法

        提取病毒RNA方法分别有:异硫氰酸胍的提取病毒RNA方法、TRIzol LS提取法、Trizol法提取法等等...

        2020/7/22 20:29:26

        各种微流控芯片键合方法的优缺点

        微流控芯片键合:目前主要有激光焊接、热压键合、胶键合、超音波焊接,每种方法都有各自的优缺点。本文主要介绍聚酯...

        2023/7/28 10:43:09

        新一代微流控键合解决方案

        微流控键合解决方案:微流控芯片制造的一个重要环节,也是最容易被忽视的--芯片键合。其中一个重要因素是:微流控...

        2023/7/27 12:44:28

        荧光素钾盐使用说明

        D-荧光素钾盐(K+)设计用于体外和体内生物发光测定。D-荧光素的质量和纯度对于获得良好和可重复的结果至关重...

        2023/7/20 11:05:11

        如何选BSA(牛血清白蛋白)

        如何选BSA(牛血清白蛋白):牛血清白蛋白(BSA)有多种形式,如何选择适合自己的牛血清白蛋白(BSA)是一...

        2023/2/14 13:09:18

        牛血清白蛋白(BSA)常见问题

        牛血清白蛋白(BSA)常见问题:牛血清白蛋白(BSA)在实验室中是通用的,可用于蛋白质印迹、细胞组织培养、P...

        2022/10/19 9:39:51

        pubmed使用方法(技巧)

        pubmed使用方法(技巧):PubMed是一个关于医学问题的学术文章和书籍的数据库。因为它是一份学术期刊,...

        2022/10/18 18:06:07

        BSA(牛血清白蛋白)

        BSA(牛血清白蛋白):牛血清白蛋白(BSA)是一种球状蛋白质,牛血清白蛋白(BSA)是发现于牛血浆中的主要...

        2022/10/18 16:48:12

        冻干培养细菌的方法

        冻干培养细菌的方法:冷冻干燥,也称为冻干或冷冻干燥,是在产品冷冻后除去水分并将其置于真空中的过程。这使得冰可...

        2022/10/16 8:27:31

        My title page contents