欢迎来到范德生物BIOFOUNT
范德生物中国
范德生物产品购买购物车
0
搜索
129618-40-2
  • names:

    Nevirapine

  • CAS号:

    129618-40-2

    MDL Number: MFCD00866928
  • MF(分子式): C15H14N4O MW(分子量): 266.3
  • EINECS:603-345-0 Reaxys Number:No data available
  • Pubchem ID:4463 Brand:BIOFOUNT
奈韦拉平
奈韦拉平Nevirapine(129618-40-2,BIRG587)是用于治疗和预防HIV / AIDS的HIV-1逆转录酶非核苷抑制剂,Ki:270μM(HIV-1逆转录酶)。奈韦拉平也是苯二氮杂非核苷逆转录酶抑制剂,与其他抗逆转录病毒药物合用时,奈韦拉平可降低HIV病毒载量并增加CD4计数,从而延缓或防止免疫系统受损,并降低患上艾滋病的风险。
货品编码 规格 纯度 价格 (¥) 现价(¥) 特价(¥) 库存描述 数量 总计 (¥)
YZM000630-50mg 50mg 99.81% ¥ 1113.00 ¥ 1113.00 2-3天
- +
¥ 0.00
YZM000630-10mg 10mg 99.81% ¥ 507.00 ¥ 507.00 2-3天
- +
¥ 0.00
快速询价
收起
你想询价的产品
请准确填写您的联系方式,以便为您提供最好的服务。
中文别名 奈韦拉平(129618-40-2,BIRG587),奈夫拉平,奈伟拉平,奈韦拉平,萘维拉平,11-环丙基-5,11-二羟基-4-甲基-6H-二吡啶并[3,2-b:2',3'-e][1,4]二氮杂唑-6-酮;
英文别名 Nevirapine(129618-40-2,BIRG587);BI RG 587;BI-RG-587;BIRG587;Hemihydrate, Nevirapine;Nevirapine Hemihydrate;Viramune;
CAS号 129618-40-2
SMILES O=C1C2=C(N=CC=C2)N(C3CC3)C4=NC=CC(C)=C4N1
Inchi InChI=1S/C15H14N4O/c1-9-6-8-17-14-12(9)18-15(20)11-3-2-7-16-13(11)19(14)10-4-5-10/h2-3,6-8,10H,4-5H2,1H3,(H,18,20)
InchiKey NQDJXKOVJZTUJA-UHFFFAOYSA-N
分子式 Formula C15H14N4O
分子量 Molecular Weight 266.3
闪点 FP 205.0±28.7 °C
熔点 Melting point 247-249°摄氏度
沸点 Boiling point 415.4±45.0 °C at 760 mmHg
Polarizability极化度 29.2±0.5 10-24cm3
密度 Density 1.4±0.1 g/cm3
蒸汽压 Vapor Pressure 3.4X10-9 mm Hg @ 25°C
溶解度Solubility 生物体外In Vitro:DMSO溶解度14.29 mg/mL(53.66 mM;Need ultrasonic)
性状 吡啶和水结晶白色至浅黄色固体,Power
储藏条件 Storage conditions -20°C 3 years年 4°C 2 years年 / In solvent溶液中:-80°C 6 months月 -20°C 1 month月

奈韦拉平,Nevirapine(129618-40-2,BIRG587)实验注意事项:
1.实验前需戴好防护眼镜,穿戴防护服和口罩,佩戴手套,避免与皮肤接触。
2.实验过程中如遇到有毒或者刺激性物质及有害物质产生,必要时实验操作需要手套箱内完成以免对实验人员造成伤害
3.实验后产生的废弃物需分类存储,并交于专业生物废气物处理公司处理,以免造成环境污染Experimental considerations:
1. Wear protective glasses, protective clothing and masks, gloves, and avoid contact with the skin during the experiment.
2. The waste generated after the experiment needs to be stored separately, and handed over to a professional biological waste gas treatment company to avoid environmental pollution.
Tags:奈韦拉平试剂,奈韦拉平合成,奈韦拉平杂质,奈韦拉平中间体,奈韦拉平密度,奈韦拉平溶解度,奈韦拉平闪点,奈韦拉平购买,奈韦拉平MSDS,
产品说明 奈韦拉平(129618-40-2,Nevirapine)是用于治疗和预防HIV/AIDS的HIV-1逆转录酶非核苷的抑制剂,Nevirapine Ki值是270 μM.
IntroductionNevirapine(129618-40-2,奈韦拉平) is a nonucleoside inhibitor of HIVreverse transcriptase used to treat and prevent HIV/AIDS; with aKiof 270 μM.
Application1
Application2
Application3
奈韦拉平(129618-40-2,Nevirapine)是苯二氮杂非核苷逆转录酶抑制剂。与其他抗逆转录病毒药物合用时,奈韦拉平可降低HIV病毒载量并增加CD4计数,从而延缓或防止免疫系统受损,并降低患上艾滋病的风险。 奈韦拉平是一种非核苷类逆转录酶抑制剂,与其他药物联合用于治疗人类免疫缺陷病毒(HIV)感染和获得性免疫缺陷综合症(AIDS)。奈韦拉平与治疗过程中血清氨基转移酶升高的比率较高有关,并且是急性,临床上明显的肝损伤的公认原因。 奈韦拉平是一种二吡啶并二氮杂卓,它是5,11-二氢-6H-二吡啶并[3,2-b:2',3'-e] [1,4]二氮卓,在第4位被甲基,氧代和环丙基取代,6和11。具有抗HIV-1活性的非核苷类逆转录酶抑制剂,可与其他抗逆转录病毒药物联合用于治疗HIV感染。它具有抗病毒药和HIV-1逆转录酶抑制剂的作用。它是二吡啶并二氮杂pine和环丙烷的成员。
警示图
危险性 warning
危险性警示 Not available
安全声明 H303吞入可能有害+H313皮肤接触可能有害+H2413吸入可能对身体有害
安全防护 P264处理后彻底清洗+P280戴防护手套/穿防护服/戴防护眼罩/戴防护面具+P305如果进入眼睛+P351用水小心冲洗几分钟+P338取出隐形眼镜(如果有)并且易于操作,继续冲洗+P337如果眼睛刺激持续+P2393获得医疗建议/护理
备注 实验过程中防止吸入、食入,做好安全防护
奈韦拉平Nevirapine(129618-40-2,BIRG587)危害标识:
象形图  
信号 Warning
GHS危险说明 Aggregated GHS information provided by 23 companies from 4 notifications to the ECHA C&L Inventory. Each notification may be associated with multiple companies.
H302 (17.39%): Harmful if swallowed [Warning Acute toxicity, oral]
H412 (95.65%): Harmful to aquatic life with long lasting effects [Hazardous to the aquatic environment, long-term hazard]
Information may vary between notifications depending on impurities, additives, and other factors. The percentage value in parenthesis indicates the notified classification ratio from companies that provide hazard codes. Only hazard codes with percentage values above 10% are shown.
防范说明代码 P264, P270, P273, P301+P312, P330, and P501
(The corresponding statement to each P-code can be found at the GHS Classification page.)
Erickson DA, et al. Characterization of the in vitro biotransformation of the HIV-1 reverse transcriptase inhibitornevirapine by human hepatic cytochromes P-450. Drug Metab Dispos. 1999 Dec;27(12):148
Dong JJ, et al. In vitro evaluation of the therapeutic potential of nevirapine in treatment of human thyroid anaplastic carcinoma. Mol Cell Endocrinol. 2013 May 6;370(1-2):113-8.
Merluzzi VJ, et al. Inhibition of HIV-1 replication by a nonnucleoside reverse transcriptase inhibitor. Science. 1990 Dec 7;250(4986):1411-3.
Riska PS, et al. Biotransformation of nevirapine, a non-nucleoside HIV-1 reverse transcriptase inhibitor, in mice, rats, rabbits, dogs, monkeys, and chimpanzees. Drug Metab Dispos. 1999 Dec;27(12):14
Onasanwo SA, et al. Evaluation of anti-ulcerogenic and ulcer-healing activities of nevirapine in rats. Afr J Med Med Sci. 2015 Sep;44(3):251-9.
奈韦拉平Nevirapine(129618-40-2,BIRG587)参考文献:
1. Is nevirapine atropisomeric? Experimental and computational evidence for rapid conformational inversion
Edmund W. D. Burke, Gareth A. Morris, Mark A. Vincent, Ian H. Hillier and Jonathan Clayden*. Org. Biomol. Chem., 2012, 10, 716–719
The question of atropisomerism in nevirapine was further highlighted early in 2011 in a paper, since withdrawn, claiming an optical rotation for a sample of nevirapine purportedly isolated from a natural source—something possible only if nevirapine can indeed exist as a pair of atropisomeric enantiomers. In response to this paper, and to the discussion it generated, we have quanti?ed, by spectroscopic and computational methods, the barrier to conformational inversion of nevirapine, and in this paperwe report our results.

2. Co-crystals of the antiretroviral nevirapine: crystal structures, thermal analysis and dissolution behaviour
Mino R. Caira,* Susan A. Bourne, Halima Samsodien. CrystEngComm, 2012, 14, 2541–2551
It has been established that nevirapine molecules associate as hydrogen-bonded (N–H…O]=C) centrosymmetric dimmers (Fig. 1(b)) in at least two polymorphs whose crystal structures are known. Furthermore, this supramolecular motif was found to occur almost exclusively in two series of nevirapine solvate structures that we reported recently. Co-crystallisation that might produce the species depicted in Fig. 1(c) and (d), containing analogous (but heteromeric) R22(8) hydrogen-bonded motifs, represents an obvious route to extending even further what we have observed to be nevirapine’s rich solid-state chemistry. While proposed heteromeric entities such as those shown in Fig. 1(c) and (d) appear to be structurally feasible, the observed robustness of the H-bonded nevirapine dimer (Fig. 1(b)) is a factor that could, however, thwart attempts at generating them. As indicated above, structural studies of nevirapine polymorphs and solvates had revealed the presence of the drug dimer in the vast majority of the crystals of these species, only the hemi- hydrate crystals containing a different motif. Speci?cally, the latter comprises two crystallographically independent nevirapine molecules linked to one another by a single N–H…O]=C bond only, water molecules serving as bridges between such pairs of drug molecules, with each water molecule engaging in three hydrogen bonds [as donor in OH…N(pyridine) and OH…O]C bonds, and as acceptor in a N–H…OH2 bond].

3. In search of a treatment for HIV – current therapies and the role of non-nucleoside reverse transcriptase inhibitors (NNRTIs)
Chevonne Reynolds, Charles B. de Koning, Moira L. Bode*. Chem. Soc. Rev., 2012, 41, 4657–4670
NNRTIs on the other hand are small molecules that are chemically distinct from nucleosides and are not dependent on host cell metabolism to be converted into an active form. NNRTIs are a group of diverse hydrophobic molecules which inhibit the HIV-1 RT catalytic activity through interaction with an allosteric site of the enzyme. The binding of a non-competitive inhibitor in this allosteric site e?ects a change in conformation of the substrate-binding site which substantially reduces the rate of incorporation of nucleotides, thereby halting DNA synthesis. Five NNRTIs have been approved by the FDA for clinical use including nevirapine 5 (Viramune®), delavirdine 6 (Rescriptor®), efavirenz 7 (Sustiva®, Stocrin®), etravirine 8 (Intelence®) and, most recently in May 2011, rilpivirine 9 (Edurant®) (Fig. 4), and several more have entered into clinical trials and development. Nevirapine 5 and delavirdine 6 are considered ‘‘?rst-generation’’ NNRTIs that are sensitive to the development of drug resistance, even with single amino acid mutations in RT. Efavirenz 7,a “second-generation” NNRTI maintains antiviral activity against several common NNRTI mutants and is currently approved as ?rst-line regimen treatment in South Africa (replaced by nevirapine for pregnant women). The most recently approved NNRTIs, etravirine 8 and rilpivirine 9, are believed to require at least three amino acid mutations in the NNRTI region before clinically signi?cant resistance is observed.

4. Modelling the binding of HIV-reverse transcriptase and nevirapine: an assessment of quantum mechanical and force ?eld approaches and predictions of the e?ect of mutations on binding
Rajesh K. Raju, Neil A. Burton* and Ian H. Hillier*. Phys.Chem.Chem.Phys., 2010, 12, 7117–7125
There have been a number of quantum mechanical and molecular dynamics studies of the NNRTI binding site interactions of HIV-1 RT. Kuno et al. have calculated the interaction energies between nevirapine and key amino acid residues forming the NNRTI binding pocket at the MP2/6-31G(d,p) level, and have also employed a three layer ONIOM model, (MP2/6-31G(d,p):B3LYP/6-31G(d,p):PM3), to study the binding site interactions of nevirapine with HIV-1 RT. He et al. have reported the interaction energies of nevirapine with selected amino acid fragments for wild-type and K103N and Y181C mutants by employing the MFCC (Molecular Fractionation with Conjugate Caps) approach at the HF/6-31G and B3LYP/6-31G(d) level of theory. Srivab and Hannongbua have employed QM and ONIOM calculations to study the binding energies of efavirenz, to wild-type and K103/Y181C double mutant structures of HIV-1 RT. Kroeger et al. have employed the free energy perturbation (FEP) scheme within a Monte Carlo model to predict the e?ect of mutations on the binding of nevirapine and efavirenz to HIV-1 RT.
    对不起,暂无产品评价!
MSDS
SDS 1.0 中文
展开
SDS 1.0 英文
展开
        新闻

        怎么做细胞爬片免疫组化染色实验

        细胞爬片免疫组化染色,是通过细胞爬片是让玻片浸在细胞培养基内,细胞在玻片上生长,主要用于组织学,免疫组织化学...

        2020/7/20 22:04:33

        提取病毒RNA的实验方法

        提取病毒RNA方法分别有:异硫氰酸胍的提取病毒RNA方法、TRIzol LS提取法、Trizol法提取法等等...

        2020/7/22 20:29:26

        各种微流控芯片键合方法的优缺点

        微流控芯片键合:目前主要有激光焊接、热压键合、胶键合、超音波焊接,每种方法都有各自的优缺点。本文主要介绍聚酯...

        2023/7/28 10:43:09

        新一代微流控键合解决方案

        微流控键合解决方案:微流控芯片制造的一个重要环节,也是最容易被忽视的--芯片键合。其中一个重要因素是:微流控...

        2023/7/27 12:44:28

        荧光素钾盐使用说明

        D-荧光素钾盐(K+)设计用于体外和体内生物发光测定。D-荧光素的质量和纯度对于获得良好和可重复的结果至关重...

        2023/7/20 11:05:11

        如何选BSA(牛血清白蛋白)

        如何选BSA(牛血清白蛋白):牛血清白蛋白(BSA)有多种形式,如何选择适合自己的牛血清白蛋白(BSA)是一...

        2023/2/14 13:09:18

        牛血清白蛋白(BSA)常见问题

        牛血清白蛋白(BSA)常见问题:牛血清白蛋白(BSA)在实验室中是通用的,可用于蛋白质印迹、细胞组织培养、P...

        2022/10/19 9:39:51

        pubmed使用方法(技巧)

        pubmed使用方法(技巧):PubMed是一个关于医学问题的学术文章和书籍的数据库。因为它是一份学术期刊,...

        2022/10/18 18:06:07

        BSA(牛血清白蛋白)

        BSA(牛血清白蛋白):牛血清白蛋白(BSA)是一种球状蛋白质,牛血清白蛋白(BSA)是发现于牛血浆中的主要...

        2022/10/18 16:48:12

        冻干培养细菌的方法

        冻干培养细菌的方法:冷冻干燥,也称为冻干或冷冻干燥,是在产品冷冻后除去水分并将其置于真空中的过程。这使得冰可...

        2022/10/16 8:27:31

        My title page contents